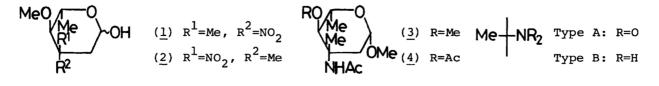
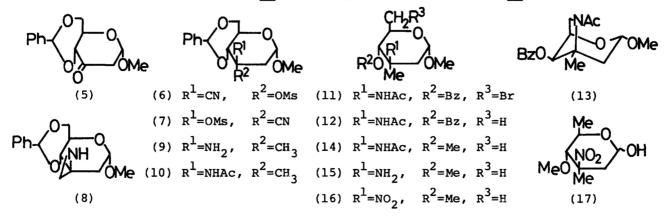
CHEMISTRY LETTERS, pp. 1403-1406, 1977. Published by the Chemical Society of Japan

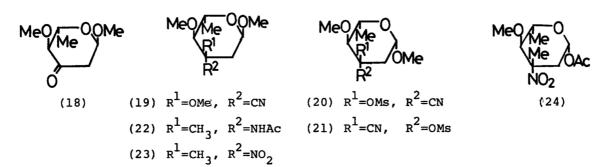
SYNTHESIS OF EVERNITROSE AND ITS ENANTIOMER


Juji YOSHIMURA, Masafumi MATSUZAWA, Ken-ichi SATO, and Masuo FUNABASHI Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227

Evernitrose (<u>1</u>: 2,3,6-trideoxy-3-*c*,4-*o*-dimethyl-3-nitro-Larabino-hexopyranose) and its enantiomer (<u>17</u>) were synthesized from methyl 2,6-dideoxy-4-*o*-methyl- α -L-*erythro*-hexopyranosid-3-ulose and methyl 4,6-*o*-benzylidene-2-deoxy- α -D-*erythro*-hexopyranosid-3-ulose, respectively. In both cases, the unique nitro group attached to the tertiary branching carbon was introduced by oxidation of the corresponding amino derivatives prepared by Bourgeois's method.

Evernitrose (<u>1</u>) is the first naturally occuring nitro-sugar found by Ganguly et al. in oligosaccharide antibiotics, everninomicin B, C and D.¹⁾ The structure of <u>1</u> was previously deduced from spectroscopic evidences and chemical degradation²⁾ to be 2,3,6-trideoxy-3-c,4-o-dimethyl-3-nitro-L-*ribo*-hexopyranose (<u>2</u>), but it was recently revised to be L-*arabino* configuration by X-ray analysis of methyl β -glycoside of the corresponding 3-acetamido derivative (3).³⁾


This communication describes the first synthesis of <u>1</u> and its enantiomer.


Nitroethane cyclization of dialdehydes is one applicable method for the construction of the characteristic tertiary nitrogen function (type A branching) in <u>1</u>, and actually, 4-epi-vancosaminide (<u>4</u>) was synthesized from the corresponding cyclization product of the dialdehyde from methyl α -L-rhamnopyranoside.⁴) In our plan, however, type B branching was introduced at first into uloses by the method of Bourgeois⁵) presented in Scheme <u>1</u>, and finally oxidized into type A.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} C=0 \end{array} \xrightarrow{\text{HCN}} & \text{MSO} \xrightarrow{\text{CN}} CN \end{array} \xrightarrow{\text{LAH}} & \left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} MSO \xrightarrow{\text{CH}} CH_2 \ddot{N}H_2 \end{array} \right] \xrightarrow{\text{H}_2C} \xrightarrow{\text{H}_1C} H_3 C \xrightarrow{\text{H}_2C} H_3 C \xrightarrow{\text{H}_2C} H_1 \end{array} \right] \end{array}$$

In order to examine the stereoselectivity of cyano-mesylation: the first step in Scheme 1, on a pyranosidulose, methyl 4,6-0-benzylidene-2-deoxy-a-D-erythrohexopyranosid-3-ulose $(5)^{6}$ was used at first. Reaction of 5 and hydrogen cyanide in pyridine at 0°C overnight and subsequent mesylation with methanesulfonyl chloride gave the corresponding 3-c-cyano-3-o-mesyl derivative of D-ribo (6: mp 151-151.5°C, $[\alpha]_{D}$ +38°) and D-arabino (7: mp 156-159°C, $[\alpha]_{D}$ +102°) configuration in 64% and 3% yields, respectively. Reduction of 6 with lithium alminium hydride in ether at room temperature gave the corresponding spiro-aziridine (8) in 81% yield, which was characterized as the *n*-acetyl derivative (mp 112-113°C, $[\alpha]_{D}$ +35°). Further hydrogenation of 8 in the presence of Raney nickel gave the corresponding amino derivative (9) in 93% yield, which was also characterized as the *N*-acetyl derivative (<u>10</u>: amorphous, $[\alpha]_{D}$ +39°). Reaction of <u>10</u> with *N*-bromosuccinimide gave methyl 3-acetamido-4-0-benzoyl-6-bromo-2,3,6-trideoxy-3-C-methyl-a-D-arabino-hexopyranoside (<u>11</u>: mp 71-72°C, $[\alpha]_{D}$ +81°) in 60% yield, of which 6-bromo atom was hydrogenolized with Raney nickel to give sirupy (12). Attempted dehydrobromination of <u>11</u> under various conditions gave only a bicyclic pyrrolidine (<u>13</u>: mp 169-174°C, $[\alpha]_{D}$ -111°) quantitatively.⁷⁾ This conversion proved unambiguously the configuration at C-3 position of 9-12, and consequently, indicated that cyanide anions attacked to the carbohyl function of 5 from the upper side of pyranoside ring to give 6. Compound 12 was de-0-benzoylated and subsequently methylated with equimolar sodium hydride and methyl iodide to give 4-0-methyl derivative (14: mp 136-138°C, $[\alpha]_{D}$ +73°) in 93% yield. Treatment of 14 with potassium hydroxide in hot aqueous ethanol gave a sirupy de-N-acetyl derivative (15) in 52% yield. Oxidation of 15 with m-cholroper-

benzoic acid⁸⁾ in dichloromethane gave successfully the 3-nitro derivative (<u>16</u>: sirup, $[\alpha]_D$ +95°) in 77% yield, which was then hydrolyzed with 0.05M sulfuric acid to give D-evernitrose (<u>17</u>: mp 84-88°C, $[\alpha]_D$ +34°) in 72% yield.

From the stereoselectivity of the cyano-mesylation mentioned above, methyl 2,6-dideoxy-4-o-methyl- α -L-erythro-hexopyranosid-3-ulose (18)⁹⁾ was deduced to be the most suitable starting material for the synthesis of $\underline{1}$, and actually, the reaction of <u>18</u> gave exclusively the product (<u>19</u>: mp 105-106°C, $[\alpha]_{D}$ -134°) having the desired configuration in 80% yield. While, the examination of the product of the same cyano-mesylation of the β -anomer¹⁰) of <u>18</u> with NMR spectrum showed the formation of desired (20) and undesired (21: mp 97-99°C, $[\alpha]_{D}$ -2.1°) compounds in the ratio of 1 to 2,¹¹⁾ indicating that the stereoselectivity of the reaction is mainly controlled by the steric hindrance of the axial C_1 -methoxyl group. Compound <u>19</u> was converted into the corresponding 3-amino derivative via the 3-spiro-aziridine, which was characterized as 3-N-acetyl derivative (22: mp 140-141°C, $[\alpha]_{D}$ -75°), the enantiomer of 14. Oxidation of the 3-amino derivative with m-chloroperbenzoic acid in chloroform gave the corresponding 3-nitro derivative (23: sirup, $[\alpha]_{p}$ -103°) in 45% yield, which was then hydrolyzed into $\underline{1}$ (mp 85-89°C, $[\alpha]_D$ -34°, lit.²: mp 88-93°C, $[\alpha]_{D}$ -19.4°). For comparison, 1-0-acetate of $\frac{1}{24}$: sirup, $[\alpha]_{D}$ -19°, lit.²: mp 58-59°C, $[\alpha]_{p}$ -20.5°) was also synthesized. It is worthy to note that the crude $\underline{24}$ was composed of almost pure β -anomer due to the steric effect of the axial C_3 methyl group.

Although the physical constants of synthesized <u>1</u> are slightly different from those reported, NMR data shown in Table 1 supported our results. Each pair of 3-acetamido (<u>14</u> and <u>22</u>) and 3-nitro (<u>16</u> and <u>23</u>) enantiomers showed almost the same parameters, and C_3 -methyl signal in the latter markedly shifted to a lower field than the former due to electron-withdrawing charactor of the nitro group. Parameters of <u>24</u> also strongly supported the structure, though little deviations from those reported are observed in the chemical shifts of a few protons.

All compounds described here gave satisfactory elemental analyses.

Chemical Shifts (δ) and Coupling Constants (Hz)										
Compounds	^{5 H} l ^{(J} 1,2e ⁾	^H 2e (J _{1,2a})	^H 2a (J _{2e,2a})	^H 4 (J _{4,5})	^H 5 ^{(J} 5.6 ⁾	H ₆	OMe	NAc	C ₃ -Me	NH
14	4.68 (0)	1.77 (4.5)	2.97 (13.6)	3.90 (10.0)		1.28	3.49 3.28	1.94	1.35	5.36
22	4.69 (0)	1.77 (4.5)	2.98 (13.2)	3.90 (10.0)	3.65 (6.0)	1.29	3.50 3.29	1.94	1.35	5.34
<u>16</u>	4.74 (1.5)	2.14 (4.5)	2.46 (13.5)	3.78 (9.5)	3.64 (5.4)	1.34	3.40 3.31		1.95	
<u>23</u>	4.74 (1.5)	2.13 (4.5)	2.45 (13.5)	3.77 (9.7)	3.62 (5.3)	1.34	3.39 3.29		1.94	
<u>24</u> a)	5.76 (3.0)	2.18 (10.0)	2.44 (13.0)	3.77 (9.5)	3.58 (6.0)	1.38	3.43		1.73	

Table 1. NMR Data of Derivatives of Evernitrose and Its Enantiomer

a) The chemical shift of C_1 -acetoxy signal was 2.10. The chemical shifts of H_4 , OMe and OAc were reported to be 3.38, 3.88 and 1.95, respectively.²⁾

References

- A. K. Ganguly and A. K. Saksena, J. Antibiotics, <u>28</u>, 707 (1975); A. K. Ganguly and S. Szmulewicz, *ibid.*, <u>28</u>, 710 (1975); A. K. Ganguly, O. Z. Sarre, D. Greeves, and J. Morton, J. Am. Chem. Soc., 97, 1982 (1975).
- 2) A. K. Ganguly. O. Z. Sarre, and H. Reimann, J. Am. Chem. Soc., 90, 7129 (1968).
- 3) A. K. Ganguly. O. Z. Sarre, A. T. Mcphail, and K. D. Onan, J. Chem. Soc. Chem. Commun., <u>1977</u>, 313.
- 4) J. S. Brimacombe and L. W. Doner, J. Chem. Soc. Perkin I, 1974, 62.
- 5) J. M. Bourgeois, *Helv. Chim. Acta*, <u>57</u>, 2553 (1974); <u>58</u>, 363 (1975); <u>59</u>, 2214 (1976); J. S. Brimacombe, J. A. Miller, and U. Zakir, *Carbohyd. Res.*, <u>41</u>, C3 (1975); <u>44</u>, C9 (1975).
- 6) A. Klemer and G. Rodemeyer, Chem. Ber., <u>107</u>, 2612 (1974); A. Rosenthal and P. Catsoulacos, Can. J. Chem., 46. 2868 (1968).
- The structure of <u>13</u> was distinguished from the possible oxazolizine derivative by the successful de-*n*-acetylation with aqueous potassium hydroxide.
- 8) C. H. Robinson, L. Milewich, and P. Hofer, Tetrahedron, 31, 524 (1966).
- 9) D. M. Clode, D. Horton, and W. Weckerle, Carbohyd. Res., 44, 227 (1975).
- 10) The synthesis of the β -anomer of <u>18</u> from methyl 2,3-o-benzylidene-4-o-methyl- α -L-rhamnopyranoside will be reported elsewhere.
- This ratio was also confirmed after the conversion of the mixture into the 3acetamido derivatives.

(Received September 29, 1977)